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ABSTRACT: We discuss here the complete determination of the elastic properties of polymeric films using
two experimental techniques. One technique employs the polymer film as a vibrating membrane and allows
a direct determination of the “macroscopic” biaxial modulus, which serves as a figure of merit of polymer
performance in applications such as packaging. Brillouin scattering, which measures the elastic properties
on a ~100-pm scale, allows for a complete characterization of the elastic behavior. Both techniques have
been applied to polyimide films. The results obtained by the two techniques are in agreement within the
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reported error bars.
Introduction

Plastic films have diverse applications such as food
packaging, electronic packaging, thermal insulation, and
membranes in filtering processes. Thermal and mechan-
ical characteristics of a polymeric film usually dictate its
level of performance in a given application. Mechanical
properties of interest are usually stiffness, strength,
toughness, and creep. Properties such as impact and tear
resistance of polymeric films cannot easily be related to
material characteristics such as molecular structure and
organization since processing history, testing conditions,
sample imperfections, and specimen geometry strongly
influence these failure-related properties. The lack of
correlation of these complex failure properties with the
chemical and physical structure of the polymer precludes
reliable experiments leading to formulation of theoretical
models which allow useful prediction of structure-property
relationships. Moreover, the usual testing procedures
leading to measurements of toughness and strength of
polymeric films are usually destructive by nature.

Stiffness, on the other hand, is a much simpler property
tounderstand since it measures the resistance of a material
to deformation. It is constitutive in nature and can be
correlated with the structure of the material. Stiffness
describes the elastic behavior of materials in the small
strain region. As an extension of Hooke’s law, the most
general definition of “stiffness” is through either the elastic
stiffness constants (C;;) or the elastic compliance constants
(Sij). Although the Cjjand S;;tensors are in reality fourth
rank tensors with four indices, each index varying from
1to03,itis convenient to use the contracted notation where
only two subindices are needed, with each index running
from 1to 6. Itshould be remembered however that in the
contracted notation C;; and S;; are not tensors. In this
notation the stress (o) and strain (e) are related through
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Inmany cases it is useful to define simpler relationships
such as the bulk modulus, Young’s modulus, Poisson’s
ratio, etc. As will be discussed below, these are special
cases of eq 1, and each one of these moduli can be expressed
as a combination of Cj; or S;; (see the appendix). In the
most general case of a triclinic crystal the C;; (or S;j) array
(which is symmetric in { and j) will have 21 independent
components, whereas in the simplest case of an isotropic
material, it only has two.

When dealing with single crystalline materials, the form
of the C;; array, and hence the number of independent
components, is fixed by the crystal symmetry. The
situation is not always so clear with semicrystalline
polymers (i.e., contain some amorphous regions), for they
usually are polycrystalline (i.e., contain many different
crystalline grains) as well. Consequently the expected
symmetry of the C;; array may not be known a priori,
being dependent on possible preferential molecular ori-
entations brought about by various processing techniques.
For example, if the molecules are randomly oriented, the
material must be elastically isotropic and only two C;; are
needed to describe the system. Greater degrees of
molecular orientation will require larger numbers of
independent C;'s. The evaluation of the number of C;;
and their measurement for the particular case of Kapton,
a commercial polyimide, is the subject of thisinvestigation.

The experimental methods commonly used to obtain
elastic constants can roughly be classified as follows: (i)
macroscopic (static) stress—strain measurements, (ii) mac-
roscopic dynamic mechanical methods, (iii) ultrasonic
methods, and (iv) Brillouin scattering. If the sample
consists of more than one structural domain, differences
can be encountered in the measured value of a particular
elastic constant, depending upon whether the test method
is macroscopic (averages over many domains) or micro-
scopic (measures a single domain). Differences may exist
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Figure 1. Scattering geometries used in Brillouin scattering
experiments: back scattering (a) and platelet (b). k;, k,, and q
arethe incident, scattered, and phonon wave vectors, respectively.
The scattering angle « is defined in the diagram and k. = 27/A
where A is the wavelength of the laser radiation.

due to the frequencies of the techniques, which become
particularlyimportant in viscoelasticmedia. For thin film
polymers ultrasonic methods are very hard to apply and
are almost never used. In such cases it is necessary to
resort to less conventional techniques such as Brillouin
scattering, and as a result, a complete determination of
the elastic tensor is not always possible.

Brillouin scattering is not a novel technique in polymer
science, and many review articles have discussed the
usefulness of the technique in this field.!®* Brillouin
scattering research with polymers has primarily been
concerned with characterization of dynamics (segmental
motion, relaxation, etc.) in the glassy state although the
technique has been employed to measure the in-plane
elastic properties of stretch-oriented polymers.*®

We also describe in this paper a novel experimental
technique for the direct measurement of the biaxial
modulus of the polyimide film. Direct measurement of
the biaxial modulus of polymeric films affords establish-
ment of a figure of merit reflecting the performance of the
polymer in packaging and/or membrane applications.
Reliable comparisons across a set of materials can be made,
allowing the best choice of high-performance materials
for a given application.

Experimental Section

Brillouin scattering, the inelastic scattering of light by sound
waves in a material, measures the velocity (and, in principle, the
attenuation) of hypersonic thermal acoustic phonons. Because
extensive theoretical and experimental reviews on Brillouin
scattering techniques exist,” only a brief outline will be given
here. The Brillouin scattering apparatus consists of an intense
monochromatic source of well-collimated light (in this case a
single-moded argon ion laser), a tandem Fabry-Perot interfer-
ometer to frequency analyze the scattered light, a detector, and
a data acquisition system. The two scattering geometries used
here are shown in Figure 1, denoted as backscattering (a) and
platelet (b). In the backscattering geometry, phonons with
wavevector q = 2nky, (where n is the refractive index and kg is
the magnitude of the wavevector of the incident light) propagating
close to the film normal can be probed. Inthe platelet geometry,
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Figure 2. Schematic diagram of the apparatus used to measure
the biaxial modulus.

phonons with q = +/2k;, propagating in the plane of the film are
investigated: a simple rotation about the surface normal allows
selection of any direction in the film plane.

The other experimental technique we used to measure the
biaxial elastic modulus involves the determination of resonance
frequencies of a radially (and isotropically) stretched circular
membrane.? For films which are orders of magnitude thinner
than their lateral dimensions elastic contributions are negligible
and the resonant frequencies depend only on the applied tension.®
Conversely, from the measured resonant frequencies the tension
can be calculated. Since the strain in the film under tension can
be measured with an optical microscope, the ratio of these two
quantities vields the biaxial modulus. The biaxial modulus
corresponds to the resistance to stretching in a plane rather than
along a single direction as for Young’s modulus.

A schematic diagram of the experimental cell isshown in Figure
2.8 The cell consists of three main pieces: A, B, and C, which
are assembled such that the film can be firmly mounted and
stretched. Piece B clamps the film over a knife-edge on C that
defines a circular boundary of 3/g-in. diameter. Control of the
tension is through the screws (R) that hold A in place. An
electrode mounted on the reticule G generates an oscillating field
that causes the film to vibrate. As the frequency of the voltage
on the electrode is varied, the induced vibrational resonances are
capacitively detected by a shielded electrode, E, facing the film.
To minimize effects of hydrodynamic damping by air, the
instrument is operated in vacuum (<10~ Torr). The strain (¢)
was measured optically by viewing the film through a high
magnification microscope. The rectangular reticule (G) posi-
tioned above the film allowed designated markings to be tracked
as a function of tension, with a resolution of 0.5 pm. The ratio
of radial stress to radial strain yields the biaxial modulus (Ep).
Since the material has to be conductive for this method to be
applicable, a thin (200-A) layer of Al was evaporated onto the
Type-H Kapton polyimide film (obtained from Du Pont Co.,
having a number-average molecular mass ranging between 20 000
and 25 000 g/mol®).

Theory

Before attempting to calculate the individual C;j from
experimental results, it is necessary to determine the
nonzero elements and the number of independent elements
in the Cj; array. Although the structure of Kapton has
been reported to be either monoclinic or orthorhombie,?
it is not clear what symmetry is to be expected for the
elastic constant matrix, in the absence of information on
preferential molecular orientation. It is therefore neces-
sary to use other measured physical properties to determine
its symmetry. One such property is the refractive index;
since the material is birefringent in the plane of the film,
the film normal can have at most 2-fold symmetry.
Furthermore, if the film normal is structurally different
from any in-plane axis, the symmetry of the C;;array must
be orthorhombic or lower, i.e., orthorhombiec, monoclinic,
or triclinic with 9, 13, or 21 independent Cj;, respectively.
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Figure 3. Brillouin spectrum of Kapton film in the backscat-
tering geometry.

Further narrowing down of the symmetry of Kapton
requires some additional assumptions: if we assume that
the orientation of the molecules does not distinguish
between the top and bottom of the film, the symmetry
cannot be triclinic. Anequivalent assumption about any
in-plane axis fixes the symmetry as orthorhombic. This
is the symmetry we will take as a starting point for our
investigation. The resulting C;; array is given by

Ch Cp Cz 0 0

Cp Cp Cy 0

Cis Cy Cy 0
i 0 0 0 C,

0 0 0 0

0 0 0 0 Ces

with its nine independent parameters. If this array is not
sufficient to account for the measured results, some of the
previous symmetry assumptions must be incorrect.

For the sake of completeness, we also present here the
methodology for relating other elastic moduli to the Cj;
array. Consider, for example, Young's modulus which is
measured by applying a tension ¢ along a given direction
(x in this example sothat oy = cand 2 =63 = 04 = 05 =
os = 0) and measuring its deformation (¢;) along the same
axis. It is clear from eqs 1 and 2 that e; = ¢s = ¢ = 0 and

g = Cpeg+ Cppey + Cpaeq
0 = Cpp¢; + Copeg + Cogey (3)
0=Clg¢q, + Cyseq + Cygeq

A solution of these three simulataneous equations yields
¢ as a function of applied stress and the ratio: o/¢ is
Young’s modulus (Evy) along the x axis. The expression
for Ey resulting from eq 3 is long but easy to derive. Note,
however, that, if the second half of eq 1 had been used
instead, we would have obtained the equivalent but simpler
expression

(2)

o qnoe oo
o oo oo

Ey=1/8, )

Equation 3 also directly leads to expressions for the
generalized Poisson ratios defined as the ratio of the
deformations perpendicular to and along the stress
direction: ey/e; and e3/¢;. Similar derivations are easily
made for other moduli and are discussed in the appendix.

Results

(i) Brillouin Scattering. Representative Brillouin
spectra obtained in the backscattering and platelet ge-
ometries are shown in Figures 3 and 4, respectively. From
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Figure 4. Brillouin spectrum of Kapton film in the platelet
geometry.
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Figure 5. Angular dependence of Brillouin frequency shifts in
the backscattering geometry: longitudinal (a) and transverse (b).

the backscattering results such as those in Figure 3, we
obtain the dependence of the Brillouin shift as a function
of & (« is defined in Figure 1); the results are shown in
Figure 5. We note that both the longitudinal (a) and
transverse (b) modes exhibit an angular dependence,
indicating that the film properties normal to the film are
different from those in the plane. The platelet results,
which reflect in-plane behavior, are shown in Figure 6.
They show no clear evidence for any angular dependence
in either the transverse or longitudinal Brillouin peaks.
However, since the uncertainty of these experimental
points is larger than that expected based on the accuracy
for the peak positions, it may be an indication of
inhomogeneities in the film on the order of the size of the
laser spot, i.e., ~100 pm.

On the basis of the above data, we conclude, within our
experimental accuracy, that Kapton exhibits isotropic
behavior in the plane and anisotropic behavior out of the
plane. Thus the polymeric film resembles a material with
hexagonal symmetry in its elastic response. This measured
symmetry is inconsistent with the orthorhombic symmetry
presumed earlier; as such it must be considered to be an
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Figure 6. Angular dependence of Brillouin frequency shifts in
the lplatelet geometry: longitudinal (dots) and transverse (tri-
angles).

accidental degeneracy, or equivalently, that the accuracy
of our measurements is not sufficient to resolve the in-
planeanisotropy. With thisindicated increased symmetry,
defining the z axis to be the film normal, the C;; array (eq
2) has the following additional restrictions: Cgs = Cy3, Cos
= (3, Cay = Css, and Cgg = (Cyy — C12)/2 which reduces the
number of independent parameters from 9 to 5. In other
words, five independent elastic constants have to be
determined to completely describe the elastic properties
of the film.

These elastic constants can be determined from the
Brillouin spectra acquired in different scattering geom-
etries. The Brillouin frequency shifts are related to the
velocities (vg) of acoustic phonons by

Aw = 2nw0(uq/c) sin(f/2)

where n is the refractive index, wy the frequency of the
incident light, ¢ the velocity of light, and 6 the scattering
angle. The subscript q emphasizes that the velocity
depends on the direction of propagation. Since the
velocities along different directions are related to different
Cij's, the latter are easily determined. Inour dataanalysis
we have used our measured value of n at 514 nm, viz., n
= 1.736 = 0.005.

Thus from the backscattering geometry at a = 0, Cyy is
obtained from the velocity of the longitudinal phonons
and Cy from the velocity of the transverse phonons.
Similarly from the in-plane longitudinal and transverse
phonon velocities we can calculate Cy; and Cgg, respectively.
Cis can be computed from Cgs = (Cyy — Cy2)/2. The
remaining elastic constant Cy3 is obtained only indirectly
from the angular dependence given in Figure 6 through
a complex expression!! which involves Cy;, Cas, Cy, and
a. This method of the determination of Ci3 is subjected
to considerable error. Alternatively, Ci5can be calculated
from independently measured values of the biaxial mod-
ulus (Ep) and Young’s modulus in-plane (Ey), using
expressions A.4 and A.2, respectively. The C;; obtained
from our Brillouin results are summarized in Table I. We
note from Table I that C;s determined from different
experimental techniques agree well within the experi-
mental error bars shown. We stress again that these
constants correspond to a material of hexagonal symmetry
which is higher than expected. This should be taken to

Elastic Properties of Polymer Films. 1 6187

50

Strain X 10‘!I

0 . ‘ :
0.8 1.0 1.2 1.4 1.6
vi (10% Hz2)
Figure 7. Strain versusthesquare of the fundamental frequency
for Kapton film.

mean that our Brillouin results are not sensitive enough
to detect an anisotropy which is known to be present
because of the observed birefringence.

(ii) Biaxial Modulus. The normal modes (of vibration)
of a film fixed on a circular boundary of radius a are well
characterized.® The film behaves as a membrane when
the restoring force is dominated by the tension T (force
per unit area) applied to the film boundary. However,
when the tension is negligible compared to the elastic
stiffness of the film, it is treated as a plate, and its elastic
response is different from that of a membrane. Whether
a given material responds like a membrane or a plate
depends on the ratio of its thickness to its diameter and
alsoonits C;;. Experimentally we found that our composite
film (polymer + 200-A aluminum) responds like a mem-
brane, with the fundamental resonance (vp;) given by

v = (0.38274/a) (T p)*/* (5)

where p is the mass density. The higher resonances (v;)
are given by

V"j = ﬁi}'pﬂl (6)

where i is the number of nodal lines and j is the number
of nodal circles. 3;; are numbers; for the lowest modes
they are 1611 = 15933, ,321 = 21355, and |13(|2 = 2.2954.3'9

The measured strain versus the square of the resonant
frequency is plotted for the polyimide film in Figure 7.
Since »2is a measure of the applied stress, Figure 7 basically
depicts the stress—strain behavior of the polymeric film.
The biaxial modulus therefore can be calculated from the
slope of the straight line in Figure 7. Using the density
1.42 g/cm? for the polyimide film, we obtain a biaxial
modulus of 5.26 + 0.26 GPa (763 000 psi).

Discussion

For a material with hexagonal symmetry, and as found
from the Brillouin measurements for Kapton, the expres-
sion for the biaxial modulus in terms of the Cj;is given by
eq A.4. Using its measured value (5.26 %+ 0.26 GPa), we
obtain Ci3 = 5.2 + 0.5 GPa. Within our experimental
error bars the elastic constants measured by Brillouin
scattering and the mechanical technique are self-consis-
tent. The expression relating the in-plane Young’s mod-
ulus (Ey™®) tothe Cj;is given by eq A.2. Using theliterature

Table I. Elastic Constants (GPa) of Kapton Film

Cn Ca Cia Ciz Cy Ces
Brillouin scattering 8.9+03 5.84 +0.12 56+ 05 58+ 0.3 1.2+ 0.2 1.57 £ 0.03
mechanical technique 52+ 0.5
literature!2 5.9+0.2
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Table II. Elastic Moduli (GPa) of Kapton Film Calculated from the Elastic Constants Determined from Brillouin Scattering

B Eyin Eyout E, Gin Gour
Brillouin scattering 58%0.1 35%£1.0 1.6x0.8 4.0+20 1.57 £ 0.03 1.2£02
mechanical technique 5.26 +0.26
literature!2 3.0%03

value!? for Eyi® (8 % 0.3 GPa) and the Brillouin values of
C11, Cia, and Css from Table I, we obtain Cj3 = 5.9 £ 0.2
GPa which is also in agreement with our measured values.

As remarked earlier, the elastic constants of a material
provide fundamental information about the material
characteristics. Knowledge of these constants helps us to
completely and unequivocally describe the mechanical
behavior of the material (under small strain). Many
polymeric systems oriented in the form of fibers or films
exhibit orthorhombicsymmetry as indicated by wide-angle
X-raystudies. Suchsystemsneed nineindependent elastic
constants to completely describe low-strain properties.
Among these, Cy;, Ca, and Cj; represent extensional
moduli; Cyg, C13, and Cag occur in expressions for Poisson’s
ratios; and Cys, Css, and Ces represent shear deformations.
For polymeric systems exhibiting hexagonal symmetry as
in the case of the Kapton film investigated here, the actual
number of independent elastic constants reduces to five,
all of which have been determined above (see Table I).

Using the complete set of C;jobtained from the Brillouin
scattering experiments, we can calculate any particular
modulus which relates to a particular deformation. Since
within our experimental accuracy Kapton is hexagonal,
we have summarized in the appendix expressions relating
particular moduli to the Cj; in this case. In Table II we
list the numerical values of these moduli which may be of
interest in various applications.

Since our Brillouin spectroscopic measurements could
not resolve the anisotropic elastic properties in the film
plane, the maximum value of the elastic modulus mea-
surable by conventional stress—strain testing is given by
its tensile modulus, 3.0 GPa.!? The higher measured
biaxial modulus therefore indicates significantly enhanced
stiffness in applications involving biaxial deformations
than that indicated by macroscopic tensile test results.
This conclusion is valid as long as the elastic response of
the film remains Hookean (as evidenced by the linear
stress—strain behavior). Thus we believe that direct
measurement of the biaxial modulus by the technique given
here provides a reliable means of predicting the perfor-
mance of polymeric films in their most popular applica-
tion: packaging.

Conclusions

Several high-performance polymeric materials are com-
monly fabricated in thin film forms. Certain polyimides,
polyaramides, and polymers such as poly(benzobisthia-
zole), etc., are examples of polymers that are usually
processed in the form of films. Irrespective of the nature
of the system being investigated, we should keep in mind
that polymer morphology plays a very important role in
governing the thermomechanical properties. Thus any
experimental technique that provides determination of
properties through preservation of polymer morphology
isdesirable. Inaddition, we generally prefer experimental
techniques involving minimal sample preparation. The
Brillouin spectroscopic technique described here is non-
destructive and allows a thorough characterization of the
elastic properties of polymeric films. Since both the
experimental techniques described here basically measure
fundamental material constants, we should be able to
establish structure-property relationships in a straight-

forward manner, through similar measurements on a
number of polymeric systems.
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Appendix

In this appendix we define and derive expressions for
various moduli of a material with hexagonal symmetry.

(i) Bulk modulus (B): relates the volume change (AV)
to an applied hydrostatic pressure (P). In this case we
have =P = 0. = 0,y = 0. and AV = e, + €y + €.

B =-P/AV = (C,,Cqy + C},Ca3—2C; 5"/
(2Cy + Cyy + Cyp— 4Cyy) (AD)

(ii) In-plane Young’s modulus (Ey™®): ratio of applied
uniaxial in-plane stress (o) to in-plane strain (e;.).

Ev.m =(Cy-Cpil- (Cm2 = CyoCa9)/
(C1;Caq— C 3B} (A2)

(iii) Out-of-plane Young’s modulus (Ev®"): ratio of
applied uniaxial out-of-plane stress (o) to out-of-plane
strain (e..).

B = =90 0¥ Cg) (A.3)

(iv) Biaxial modulus (Ep): ratio of applied biaxial in-
plane stress (oxx = gy,) to biaxial in-plane strain (e;x — €yy).

By= G4 Gy~ 20700 (A.4)

(v) In-plane shear modulus: ratio of applied in-plane shear
stress (os,) to the in-plane shear strain ().

Gin = :d/ezy = Cﬁﬁ (A5)

(vi) Out-of-plane shear modulus: ratio of applied out-
of-plane shear stress (o;;) to the out-of-plane shear strain
(€xz)-

Gout = Uzz'lexz = Cﬁ (AS)
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